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SYNOPTIC ABSTRACT

We consider the problem of selecting the normal population with the smallest co-

efficient of variation, which is a natural goal when the means as well as the variances

of the populations are unknown and unequal. The indifference-zone approach (Bech-

hofer 1954) to this problem has been previously considered by Choi, Jeon and Kim

(1982). We review their selection procedure and provide tables of sample sizes for it.

Next we consider the subset selection approach of Gupta (1956, 1965). We propose a

natural selection procedure, derive its least favorable configuration and provide tables

of critical constants. An example is given to illustrate the two procedures.

Keywords and Phrases: Indifference-zone approach; Noncentral t-distribution;
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1. INTRODUCTION

The problem of selecting the normal population with the largest mean has received

much attention in the ranking and selection literature; see Gibbons, Olkin and Sobel

(1977) and Gupta and Panchapakesan (1979). When the populations have unknown

and unequal variances, procedures for selecting the population with the largest mean

under the indifference-zone approach have been proposed by Dudewicz and Dalal

(1975) and Rinott (1978). However, in this case, often the experimenter is interested

in selecting a population with a large mean and a small variance. One formulation

of this problem was studied by Santner and Tamhane (1984), who specified separate

indifference zones on the means, µi, and the variances, σ2
i . In this paper we study

an alternative formulation in which the µi and the σi are combined into a single

parameter for each population, namely the inverse of the coefficient of variation,

θi = µi/σi. We study both the indifference-zone approach (Bechhofer 1954) and the

subset selection approach (Gupta 1956, 1965) to the problem of selecting the normal

population with the largest θi.

Choi, Jeon and Kim (1982) have offered a different motivation for selecting the

normal population with the largest θi. They consider a quality control application in

which manufactured parts have a lower specification limit, which may be assumed to

be zero. If the output of the i-th process (1 ≤ i ≤ k) is distributed as N(µi, σ
2
i ) then its

fraction defective is pi = Φ(−θi), where Φ(·) is the standard normal c.d.f. Hence the

smallest pi corresponds to the largest θi. In passing we note that the univariate case

of Alam and Rizvi’s (1966) multivariate selection problem corresponds to selecting

the normal population with the largest value of |θi|.
The paper is organized as follows. The basic notation and assumptions are defined

in Section 2. Choi et al.’s (1982) indifference-zone procedure for selecting the largest

θi is reviewed in Section 3. We provide tables of exact sample sizes for their procedure.

In Section 4 we propose a subset selection procedure for the largest θi. The proof of

the least favorable configuration (LFC) of this procedure is given in the Appendix.

Our method of proof of the LFC for the subset selection procedure is different from

Choi et al.’s and it also applies to the indifference-zone procedure with only slight
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modifications (not given here, but available from the authors). We provide tables

of critical constants for the subset selection procedure. Section 5 gives a real data

example to illustrate the indifference-zone selection and subset selection procedures.

Some computational details are provided in Section 6.

2. PRELIMINARIES

Let Πi denote a normal population with mean µi and standard deviation σi, and

let θi = µi/σi (1 ≤ i ≤ k). We assume that the µi’s and the σi’s are unknown.

We further assume that the µi’s are known to be nonnegative (in which case only

it makes sense to compare the θi’s). Without loss of generality, suppose that the

populations are labeled so that θ1 ≤ θ2 ≤ · · · ≤ θk and this labelling is unknown

to the experimenter. The population associated with θk is referred to as the “best”

population and is assumed to be unique (if more than one population is tied for the

“best” then one is arbitrarily selected to be the “best”). Finally, we assume that a

finite upper bound, θ∗ > 0, is specified on all the θi. Without such a bound there does

not exist a single-stage procedure that achieves the probability requirement stated in

(1) below. The reason is that the estimators of the θi have noncentral t-distributions

whose noncentrality parameters and hence their variances increase beyond limit as the

θi →∞. If too high a value of θ∗ is specified then the procedure becomes conservative

since too high a sample size is required (see the tables of the sample sizes given in the

sequel). On the other hand, If too low a value of θ∗ is specified then the procedure

becomes anti-conservative and may not meet the specified probability requirement.

3. INDIFFERENCE-ZONE APPROACH

For the indifference-zone approach the experimenter’s goal is to select the “best”

population. This is referred to as the correct selection (CS). The experimenter wants

that the following probability requirement be satisfied:

P (CS) ≥ P ∗ whenever θk − θk−1 ≥ δ∗ and θk ≤ θ∗, (1)



SELECTING THE SMALLEST COEFFICIENT OF VARIATION

where θ∗ > 0, P ∗ (1/k < P ∗ < 1) and δ∗ (0 < δ∗ ≤ θ∗) are the constants specified by

the experimenter.

Throughout we assume that an i.i.d. random sample with a common sample size

n is taken from each population Πi. It will be seen from the tables at the end of

the paper that n required to guarantee (1) is strictly increasing in θ∗ for any fixed

{δ∗, P ∗}, which supports the observation above that without a finite upper bound

θ∗ > 0 on all the θi, the required n will be unbounded. Also, care must be exercised

in specifying θ∗ since an excessively high value would result in an excessively high

n, while an excessively low value would result in the probability requirement (1) not

being met.

The following single-stage natural selection procedure was proposed by Choi et al.

(1982): Take a random sample of size n from each Πi. Compute the sample mean X i,

the sample standard deviation Si, and θ̂i = X i/Si for the data from Πi (1 ≤ i ≤ k).

Select the Πi associated with θ̂max as the best population.

The main design problem is to determine the sample size n that will guarantee

the probability requirement (1). Toward this end, Choi et al. (1982) showed that the

LFC that minimizes the P(CS) over the so-called preference zone, {(θ1, θ2, . . . , θk) :

θk − θk−1 ≥ δ∗, θk ≤ θ∗}, is given by

θ1 = . . . = θk−1 = θk − δ∗, θk = θ∗. (2)

To prove this result the first step is to show that the infimum of P(CS) subject

to θk − θk−1 ≥ δ∗ and θk = θ (where θ ∈ [δ∗, θ∗] is fixed) occurs at the slippage

configuration: θ1 = . . . = θk−1 = θk − δ∗, θk = θ. The proof uses a theorem from

Barr and Rizvi (1966) which applies the fact that for i = 1, 2, . . . , k, the Ti = θ̂i

√
n

are independent noncentral t random variables (r.v.’s) with n− 1 degrees of freedom

(d.f.) and noncentrality parameters (n.c.p.) λi = θi

√
n (denoted as Ti ∼ tn−1(λi)) and

that their cumulative distribution functions (c.d.f.’s), Fν(·|λi), form a stochastically

increasing family of distributions in λi. The second step of the proof is to show that

the P(CS) in the slippage configuration is a decreasing function of θk = θ, so the
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infimum over the preference zone is attained when θ = θ∗, which is the LFC given in

(2). We thus get

PLFC(CS) =
∫ ∞

−∞

[
Fn−1(x|(θ∗ − δ∗)

√
n)

]k−1
fn−1(x|θ∗

√
n)dx, (3)

where fν(·|λ) is the probability density function (p.d.f.) of tν(λ). Exact sample sizes,

n, calculated using the above expression for selected values of k, P ∗, θ∗ and δ∗ are

given in Tables 1 -6.

An excellent approximation to the exact sample sizes can be calculated using the

variance stabilizing transformation (Sen 1964)

Yi = sinh−1(θ̂i/
√

2) (1 ≤ i ≤ k).

This transformation was used by Choi et al. (1982) to show that the large sample

approximation to n is given by

n =
d2

2


ln





θ∗ +
√

2 + θ∗2

(θ∗ − δ∗) +
√

2 + (θ∗ − δ∗)2







−2

, (4)

where d = d(k, P ∗) is the solution to the equation

∫ ∞

−∞
[Φ(x + d)]k−1 dΦ(x) = P ∗. (5)

The values of d(k, P ∗) have been tabulated Bechhofer (1954) and Gupta (1963) for

selected values of k and P ∗. The approximate values of n calculated using the above

formula are also given in Tables 1 - 6. One can see that they are always less than or

equal to the exact values, and are quite close.
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Table 1: Exact and Approximate Values of Sample Size n Per Population for Indif-
ference Zone Selection (θ∗ = 1.0, δ∗ = 0.5)

k
P ∗ 2 3 4 5 6 7 8
0.90 18 27 32 36 40 42 45

17 26 31 35 38 41 43
0.95 29 39 45 50 53 56 58

28 38 44 48 52 55 57
0.99 56 68 75 80 84 87 89

56 68 75 79 83 86 89

The upper entry in each cell is the exact n and the lower entry is the approximate n.

Table 2: Exact and Approximate Values of Sample Size n Per Population for Indif-
ference Zone Selection (θ∗ = 2.0, δ∗ = 0.5)

k
P ∗ 2 3 4 5 6 7 8
0.90 35 52 64 72 78 83 87

34 51 61 69 75 79 84
0.95 56 76 89 97 104 110 115

55 75 86 95 101 107 111
0.99 110 133 147 157 165 171 176

110 133 146 156 163 169 174

The upper entry in each cell is the exact n and the lower entry is the approximate n.

Table 3: Exact and Approximate Values of Sample Size n Per Population for Indif-
ference Zone Selection (θ∗ = 3.0, δ∗ = 0.5)

k
P ∗ 2 3 4 5 6 7 8
0.90 64 98 118 133 145 155 163

63 95 115 129 141 150 157
0.95 105 143 166 182 195 205 214

104 141 163 178 191 201 209
0.99 206 250 275 293 307 319 329

207 250 275 293 307 319 329

The upper entry in each cell is the exact n and the lower entry is the approximate n.
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Table 4: Exact and Approximate Values of Sample Size n Per Population for Indif-
ference Zone Selection (θ∗ = 2.0, δ∗ = 1.0)

k
P ∗ 2 3 4 5 6 7 8
0.90 8 12 15 16 18 19 20

7 11 13 15 16 17 18
0.95 13 17 20 22 23 25 26

12 16 18 20 21 23 24
0.99 24 29 32 34 36 37 39

23 28 31 33 34 36 37

The upper entry in each cell is the exact n and the lower entry is the approximate n.

Table 5: Exact and Approximate Values of Sample Size n Per Population for Indif-
ference Zone Selection (θ∗ = 4.0, δ∗ = 1.0)

k
P ∗ 2 3 4 5 6 7 8
0.90 25 38 46 51 56 60 63

24 36 43 48 52 56 59
0.95 40 55 63 70 74 78 82

39 52 61 66 71 75 78
0.99 78 95 104 111 117 121 125

77 93 102 109 114 118 122

The upper entry in each cell is the exact n and the lower entry is the approximate n.

4. SUBSET SELECTION APPROACH

For the subset selection approach the experimenter’s goal is to select a subset of

the k populations that contains the “best” population. This is referred to as the

correct selection (CS). Any selection procedure must satisfy the following probability

requirement:

P (CS) ≥ P ∗ for all (θ1, θ2, . . . , θk) and θk ≤ θ∗ (6)

where θ∗ > 0 and P ∗ (1/k < P ∗ < 1) are prespecified constants.

Analogous to Gupta (1956), we propose the following single-stage natural selection

procedure: Take a random sample of size n from each Πi. Compute θ̂i = X i/Si for
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Table 6: Exact and Approximate Values of Sample Size n Per Population for Indif-
ference Zone Selection (θ∗ = 6.0, δ∗ = 1.0)

k
P ∗ 2 3 4 5 6 7 8
0.90 55 83 100 113 123 131 138

53 80 97 109 118 126 133
0.95 89 121 140 154 164 173 180

87 118 137 150 161 169 176
0.99 174 211 232 247 259 268 277

174 211 232 247 259 268 277

The upper entry in each cell is the exact n and the lower entry is the approximate n.

the data from Πi (1 ≤ i ≤ k) and select the subset

S =
{
Πi : θ̂i ≥ θ̂max − c

}
, (7)

where c > 0 is a constant that must be determined to guarantee the probability

requirement (6).

We now state a theorem concerning the LFC of the subset selection procedure (7).

Theorem 1 : The probability of a correct selection of the subset selection proce-

dure (7) is minimized over the entire parameter space at the equal parameter config-

uration (EPC): θ1 = · · · = θk = θ∗, and this minimum is given by

PLFC(CS) =
∫ ∞

−∞

[
Fn−1(x + b|θ∗√n)

]k−1
fn−1(x|θ∗

√
n)dx, (8)

where b = c
√

n.

Proof: The P(CS) of (7) is given by

P (CS) = P{Πk ∈ S}
= P{θ̂k ≥ θ̂i − c ∀ i 6= k}
= P{θ̂k

√
n + c

√
n ≥ θ̂i

√
n ∀ i 6= k}
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= P{tn−1(θk

√
n) + b ≥ tn−1(θi

√
n) ∀ i 6= k}

=
∫ ∞

−∞

k−1∏

i=1

Fn−1(x + b|λi)fn−1(x|λk)dx,

where λi = θi

√
n (1 ≤ i ≤ k) are the n.c.p.’s. Because of the stochastically increasing

property of the noncentral t-distribution in its n.c.p., it follows that the above P(CS)

expression is minimized at the EPC: θ1 = θ2 = · · · = θk = θ (say), where θ ≤ θ∗; see,

e.g., equation (11.4) in Gupta and Panchapakesan (1979). We need to find a further

minimum with respect to the common value θ. In the lemma given in the Appendix

let the Ui be distributed as
√

χ2
ν/ν r.v.’s, which makes the Xi i.i.d. noncentral t r.v.’s

with ν d.f. and n.c.p. = λ. Then the lemma shows that the P(CS) expression in the

EPC is a decreasing function of the common n.c.p. λ = θ
√

n. Hence it follows that

the minimizing value of θ is θ∗ and the overall minimum is given by (8). 2

In Tables 7, 8 and 9 we list the critical constants b = c
√

n for P ∗ = 0.90, 0.95

and 0.99, respectively, for selected values of k, θ∗ and n. It is worth noting that if n

is small then c may exceed θ∗. Therefore, θmax − c ≤ θ∗ − c ≤ 0 while θi ≥ 0 ∀ i.

Hence θi ≥ θmax − c ∀ i, which means that all Πi will be included in the subset with

high probability. For example, from Table 7 for P ∗ = 0.90 we see that for k = 8, θ∗ =

5, n = 10, we have b = 15.870 and hence c = 15.870/
√

10 = 5.019 > θ∗ = 5. However,

for k = 8, θ∗ = 5, n = 20, we have b = 13.096 and hence c = 13.096/
√

20 = 2.928 <

θ∗ = 5. The point here is that if n is not sufficiently large then a specified P ∗ may

not be achieved unless all populations are included in the subset. Thus the selection

procedure may not be an effective screening procedure. The example in Section 5

illustrates this point.

5. EXAMPLE

Vardeman (1994) gave the data (originally from Pellicane, 1990) shown in Table 10

on the strengths of wood joints made using eight commercially available construction

adhesive glues. Eight wood joints were tested for each glue. If there is too much

variability in the joint strengths for the glue with the highest average joint strength,

then we may want to choose another glue with somewhat lower average, but also
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Table 7: Critical Constants b = c
√

n for Subset Selection (P ∗ = 0.90)

k θ∗ n = 10 n = 20 n = 30 n = 40 n = 50
2 1 2.513 2.352 2.305 2.283 2.270

2 3.671 3.377 3.292 3.252 3.229
3 5.050 4.607 4.480 4.420 4.384
4 6.509 5.915 5.745 5.664 5.617
5 8.003 7.258 7.045 6.943 6.884

3 1 3.276 2.991 2.908 2.867 2.843
2 4.869 4.340 4.187 4.112 4.068
3 6.732 5.940 5.711 5.601 5.534
4 8.693 7.636 7.331 7.183 7.095
5 10.699 9.377 8.994 8.809 8.699

4 1 3.727 3.351 3.242 3.189 3.157
2 5.587 4.890 4.688 4.590 4.532
3 7.744 6.704 6.404 6.258 6.171
4 10.011 8.624 8.224 8.030 7.914
5 12.327 10.592 10.093 9.850 9.706

5 1 4.051 3.603 3.473 3.410 3.372
2 6.106 5.275 5.036 4.919 4.850
3 8.477 7.240 6.885 6.712 6.609
4 10.965 9.317 8.844 8.615 8.478
5 13.505 11.447 10.856 10.570 10.399

6 1 4.304 3.795 3.648 3.577 3.534
2 6.514 5.573 5.301 5.170 5.091
3 9.055 7.653 7.252 7.058 6.942
4 11.718 9.853 9.319 9.061 8.907
5 14.438 12.105 11.441 11.117 10.925

7 1 4.513 3.951 3.790 3.711 3.664
2 6.852 5.812 5.516 5.372 5.285
3 9.534 7.990 7.550 7.337 7.209
4 12.343 10.288 9.704 9.420 9.251
5 15.209 12.644 11.912 11.558 11.348

8 1 4.691 4.082 3.908 3.823 3.773
2 7.141 6.015 5.696 5.540 5.447
3 9.944 8.273 7.799 7.570 7.432
4 12.878 10.655 10.026 9.721 9.538
5 15.870 13.096 12.310 11.929 11.700
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Table 8: Critical Constants b = c
√

n for Subset Selection (P ∗ = 0.95)

k θ∗ n = 10 n = 20 n = 30 n = 40 n = 50
2 1 3.348 3.069 2.990 2.952 2.931

2 4.959 4.437 4.290 4.221 4.181
3 6.853 6.068 5.847 5.743 5.683
4 8.848 7.798 7.503 7.364 7.283
5 10.888 9.574 9.204 9.030 8.928

3 1 4.122 3.683 3.560 3.501 3.467
2 6.196 5.372 5.143 5.033 4.969
3 8.599 7.368 7.024 6.861 6.765
4 11.121 9.480 9.021 8.805 8.675
5 13.696 11.646 11.071 10.798 10.639

4 1 4.584 4.032 3.879 3.806 3.763
2 6.943 5.911 5.624 5.489 5.409
3 9.656 8.118 7.691 7.489 7.370
4 12.500 10.451 9.882 9.613 9.454
5 15.403 12.841 12.131 11.796 11.596

5 1 4.918 4.277 4.101 4.017 3.967
2 7.485 6.290 5.960 5.804 5.712
3 10.425 8.647 8.157 7.924 7.786
4 13.497 11.137 10.489 10.174 9.991
5 16.647 13.686 12.873 12.485 12.255

6 1 5.180 4.465 4.270 4.177 4.122
2 7.913 6.582 6.217 6.045 5.943
3 11.033 9.056 8.514 8.257 8.106
4 14.295 11.666 10.946 10.604 10.402
5 17.620 14.339 13.439 13.013 12.761

7 1 5.397 4.618 4.406 4.306 4.246
2 8.268 6.820 6.246 6.239 6.129
3 11.538 9.390 8.802 8.526 8.362
4 14.954 12.010 11.319 10.950 10.732
5 18.435 14.872 13.899 13.439 13.169

8 1 5.582 4.747 4.521 4.413 4.350
2 8.572 7.022 6.601 6.402 6.284
3 11.968 9.671 9.047 8.751 8.578
4 15.515 12.463 11.633 11.244 11.009
5 19.130 15.323 14.284 13.798 13.508
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Table 9: Critical Constants b = c
√

n for Subset Selection (P ∗ = 0.99)

k θ∗ n = 10 n = 20 n = 30 n = 40 n = 50
2 1 5.235 4.533 4.347 4.261 4.212

2 7.983 6.659 6.306 6.142 6.048
3 11.128 9.156 8.627 8.382 8.241
4 14.416 11.793 11.088 10.760 10.572
5 17.768 14.492 13.606 13.202 12.966

3 1 6.073 5.113 4.864 4.750 4.684
2 9.359 7.564 7.093 6.876 6.751
3 13.087 10.422 9.721 9.396 9.209
4 16.975 13.437 12.502 12.070 11.821
5 20.956 16.516 15.356 14.815 14.503

4 1 6.582 5.449 5.159 5.027 4.951
2 10.201 8.092 7.545 7.293 7.148
3 14.284 11.164 10.350 9.975 9.759
4 18.550 14.399 13.316 12.813 12.529
5 22.881 17.697 16.357 15.734 15.367

5 1 6.952 5.687 5.366 5.219 5.135
2 10.817 8.467 7.862 7.585 7.426
3 15.165 11.689 10.791 10.380 10.142
4 19.688 15.083 13.885 13.344 13.021
5 24.303 18.550 17.063 16.384 15.969

6 1 7.246 5.871 5.524 5.367 5.277
2 11.304 8.758 8.107 7.809 7.638
3 15.838 12.097 11.134 10.691 10.436
4 20.606 15.619 14.328 13.743 13.404
5 25.463 19.206 17.609 16.866 16.450

7 1 7.490 6.021 5.653 5.486 5.391
2 11.709 8.996 8.306 7.991 7.810
3 16.450 12.436 11.411 10.943 10.672
4 21.350 16.045 14.700 14.066 13.710
5 26.381 19.753 18.047 17.281 16.822

8 1 7.699 6.148 5.762 5.587 5.486
2 12.059 9.198 8.474 8.144 7.954
3 16.942 12.720 11.648 11.156 10.872
4 22.050 16.428 14.995 14.339 13.967
5 27.125 20.191 18.419 17.588 17.150
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Table 10: Sample Means (X i), Standard Deviations (Si) and Inverses of Coefficients
of Variation (θ̂i = X i/Si) for Wood Joint Strength Data (Units are kN)

Glue i 1 2 3 4
X i 1821 1968 1439 616
Si 214 435 243 205

θ̂i 8.509 4.524 5.922 2.865

Glue i 5 6 7 8
X i 1354 1424 1694 1669
Si 135 191 225 551

θ̂i 10.080 7.455 7.529 3.029

lower variance. Therefore the goal of selecting the glue with the smallest coefficient

of variation or the largest θi is reasonable.

First consider the indifference-zone selection goal. Suppose that based on past

experience with similar data θ∗ is specified to be 10. Also suppose that δ∗ = 2 and

P ∗ = 0.90. From Table I in Bechhofer (1954) we find that d = d(8, 0.90) = 2.8691.

Then using the formula (4), we obtain

n =
(2.8691)2

2


ln





10 +
√

2 + 102

(10− 2) +
√

2 + (10− 2)2







−2

= 84.74 or 85.

Here we have n = 8, which is too small. In fact, n = 8 guarantees P ∗ slightly less

than 0.35 as can be verified using d = d(8, 0.35) = 0.8897 from the same table in

Bechhofer (1954) which corresponds to n = 8.15. Glue ]5 with θ̂max = 10.080 will be

selected as the “best” glue, but only with confidence slightly less than 35% if θmax is

≤ 10 and exceeds other θi’s by at least δ∗ = 2.

Next consider the subset selection goal with P ∗ = 0.90. The value of b is not

tabled for the combination k = 8, n = 8, θ∗ = 10 and P ∗ = 0.90. Using our program,

this value is calculated to be 34.584 and hence c = 34.584/
√

8 = 12.227. Now,

θ̂max − c = 10.080 − 12.227 = −2.147 and all θ̂i exceed this negative lower bound;

therefore all glues are selected in the subset and there is no screening. This is due

to the fact that with a small sample size of 8 per glue, we cannot guarantee with
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90% confidence that the “best” glue is in the subset unless we include all glues in

the subset. To eliminate any glue we must settle for a lower P ∗. For example, to

eliminate Glue ]4 with the smallest θ̂i = 2.865, the critical constant c must be no

more than 10.080− 2.865 = 7.215; the corresponding value of P ∗ is calculated to be

0.655.

6. COMPUTATIONAL DETAILS

All computations were implemented in R, version 1.8.0, base package. The p.d.f.

and the c.d.f. of the noncentral t-distribution are built-in functions ‘dt’ and ‘pt’ in

R; the actual algorithms are described in Becker, Chambers and Wilks (1988) and

Lenth (1989). The integrals were computed by the ‘integrate’ function in R, which is

based on QUADPACK routines ‘dqags’ and ‘dqagi’ by Piessens et al. (1983) available

from Netlib. An estimate of the modulus of the absolute error is provided for each

evaluation of integral.

Instead of directly solving the equation

f(b) =
∫ ∞

−∞

[
Fn−1(x + b|θ∗√n)

]k−1
fn−1(x|θ∗

√
n)dx− P ∗ = 0,

we minimized f 2(b). The ‘optim’ function in R was used for minimization. The

‘optim’ function was called with default optimizing method, which is the Nelder and

Mead (1965) method. The convergence criterion used was f 2(b) < 10−9.
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A. APPENDIX

Lemma 1 : Let Y1, Y2, . . . , Yk be i.i.d. N(λ, 1) r.v.’s and let U1, U2, . . . , Uk be i.i.d.

nonnegative continuous r.v.’s independent of the Yi’s. Define Xi = Yi/Ui (1 ≤ i ≤ k)

and let

h(λ) = P{Xk + c ≥ X1, . . . , Xk−1}. (A.9)

Then for c, λ > 0, h(λ) is decreasing in λ.

Proof: The c.d.f. of Xi can be written as

F (x|λ) = P{Yi ≤ xUi}
=

∫ ∞

0
g(u)

∫ xu

−∞
(2π)−1/2 exp

{
−1

2
(y − λ)2

}
dy du, (A.10)

where g(u) is the p.d.f. of Ui. By differentiating (A.10) with respect to x we find that

the p.d.f. of Xi is given by

f(x|λ) = (2π)−1/2
∫ ∞

0
exp

{
−1

2
(xu− λ)2

}
ug(u)du.

Therefore we can write (A.9) as

h(λ) = (2π)−k/2
∫

R1(u)

∫

R2(x)
exp

{
−1

2

k∑

i=1

(xiui − λ)2

}
k∏

i=1

dxiuig(ui)dui,

where the integrations are over the regions

R1(u) =
{
u = (u1, . . . , uk) ∈ Rk : ui ≥ 0 (1 ≤ i ≤ k)

}

and

R2(x) =
{
x = (x1, . . . , xk) ∈ Rk : xk + c > xi (1 ≤ i ≤ k)

}
.

We have

dh(λ)

dλ
= (2π)−k/2

∫

R1(u)

∫

R2(x)
exp

{
−1

2

k∑

i=1

(xiui − λ)2

} {
k∑

i=1

(xiui − λ)

}
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×
k∏

i=1

dxi uig(ui)dui

= (2π)−k/2
∫

R1(u)

∫

R2(x)
exp

{
−1

2

k∑

i=1

(xiui − λ)2

}

×{(k − 1)(x1u1 − λ) + (xkuk − λ)}
k∏

i=1

dxi uig(ui)dui

= A + B (say),

where

A = (k − 1)(2π)−k/2
∫

R1(u)

∫

R2(x)
exp

{
−1

2

k∑

i=1

(xiui − λ)2

}
(x1u1 − λ)

×
k∏

i=1

dxi uig(ui)dui

= (k − 1)(2π)−k/2
∫

R1(u)

∫ ∞

xk=−∞

∫ xk+c

x2=−∞
· · ·

∫ xk+c

xk−1=−∞
exp

{
−1

2

k∑

i=2

(xiui − λ)2

}

×
[∫ xk+c

x1=−∞
(x1u1 − λ) exp

{
−1

2
(x1u1 − λ)2

}
dx1

] k∏

i=2

dxi

k∏

i=1

uig(ui)dui

= (k − 1)(2π)−k/2
∫

R1(u)

∫ ∞

xk=−∞

∫ xk+c

x2=−∞
· · ·

∫ xk+c

xk−1=−∞
exp

{
−1

2

k∑

i=2

(xiui − λ)2

}

×
(
− 1

u1

)
exp

{
−1

2
[(xk + c)u1 − λ]2

} k∏

i=2

dxi

k∏

i=1

uig(ui)dui, (A.11)

where we have used the fact that

∫
(x1u1 − λ) exp

{
−1

2
(x1u1 − λ)2

}
dx1 =

(
− 1

u1

)
exp

{
−1

2
(x1u1 − λ)2

}
. (A.12)

Next,

B = (2π)−k/2
∫

R1(u)

∫

R2(x)
exp

{
−1

2

k∑

i=1

(xiui − λ)2

}
(xkuk − λ)

k∏

i=1

dxi uig(ui)dui

= (k − 1)(2π)−k/2
∫

R1(u)

∫ ∞

x1=−∞

∫ x1

x2=−∞
· · ·

∫ x1

xk−1=−∞
exp

{
−1

2

k−1∑

i=1

(xiui − λ)2

}

×
[∫ ∞

xk=x1−c
(xkuk − λ) exp

{
−1

2
(xkuk − λ)2

}
dxk

] k−1∏

i=1

dxi

k∏

i=1

uig(ui)dui
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= (k − 1)(2π)−k/2
∫

R1(u)

∫ ∞

x1=−∞

∫ x1

x2=−∞
· · ·

∫ x1

xk−1=−∞
exp

{
−1

2

k−1∑

i=1

(xiui − λ)2

}

×
(

1

uk

)
exp

{
−1

2
[(x1 − c)uk − λ]2

}

×
k−1∏

i=1

dxi

k∏

i=1

uig(ui)dui, (A.13)

where we have again used (A.12).

Relabeling xk + c as x1 in (A.11) and combining it with (A.13) we obtain

dh(λ)

dλ
= (k − 1)(2π)−k/2

∫

R1(u)

∫ ∞

x1=−∞

∫ x1

x2=−∞
· · ·

∫ x1

xk−1=−∞

× exp

{
−1

2

[
k−1∑

i=1

(xiui − λ)2 + {(x1 − c)uk − λ}2

]} (
1

uk

− 1

u1

)

×
k−1∏

i=1

dxi

k∏

i=1

uig(ui)dui.

Define

C(x1) =
∫ ∞

u2=0
· · ·

∫ ∞

uk−1=0

∫ x1

x2=−∞
· · ·

∫ x1

xk−1=−∞
exp

{
−1

2

k−1∑

i=2

(xiui − λ)2

}

×
k−1∏

i=2

uig(ui)duidxi.

Clearly, C(x1) is a nondecreasing function of x1. Then

dh(λ)

dλ
= (k − 1)(2π)−k/2

∫ ∞

u1=0

∫ ∞

uk=0

∫ ∞

x1=−∞
C(x1)g(u1)g(uk)(u1 − uk)

× exp
{
−1

2

[
(x1u1 − λ)2 + {(x1 − c)uk − λ}2

]}
dx1du1duk.

Now,

(x1u1 − λ)2 + {(x1 − c)uk − λ}2 = (u2
1 + u2

k)

[
x1 − λ(u1 + uk) + cu2

k

u2
1 + u2

k

]2

+
{λ(u1 − uk) + cu1uk}2

u2
1 + u2

k

.
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Also, define

D(u1, uk) =

[
exp

{
− [λ(u1 − uk) + cu1uk]

2

2(u2
1 + u2

k)

}]

×
∫ ∞

−∞
C(x1) exp



−

u2
1 + u2

k

2

[
x1 − λ(u1 + uk) + cu2

k

u2
1 + u2

k

]2


 dx1.

Therefore we have

dh(λ)

dλ
= (k−1)(2π)−k/2

∫ ∞

uk=0

∫ ∞

u1=uk

(u1−uk)g(u1)g(uk)[D(u1, uk)−D(uk, u1)]du1duk.

Since c, λ ≥ 0 then u1 ≥ uk ≥ 0,

D(u1, uk)−D(uk, u1) =

√
2π

u2
1 + u2

k

([
exp

{
− [λ(u1 − uk) + cu1uk]

2

2(u2
1 + u2

k)

}]
E[C(X1)]

−
[
exp

{
− [λ(u1 − uk) + cu1uk]

2

2(u2
1 + u2

k)

}]
E[C(Xk)]

)

≤
√

2π

u2
1 + u2

k

([
exp

{
− [λ(u1 − uk) + cu1uk]

2

2(u2
1 + u2

k)

}]

× {E[C(X1)]− E[C(Xk)]})
≤ 0,

where X1 and Xk are normal random variables with means

λ(u1 + uk) + cu2
k

u2
1 + u2

k

and
λ(u1 + uk) + cu2

k

u2
1 + u2

k

,

respectively, and variances 1/(u2
1 +u2

k). The last inequality follows from the fact that

C(x) is nondecreasing. Thus dh(λ)/dλ ≤ 0 and the lemma is proved. 2
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